- fonctions réciproquement inverses
- f; plвзаимно-обратные функции
Dictionnaire polytechnique Français-Russe. 2013.
Dictionnaire polytechnique Français-Russe. 2013.
inverse — [ ɛ̃vɛrs ] adj. et n. m. • 1611; envers XIIe; lat. inversus, de invertere « retourner » I ♦ Adj. 1 ♦ (Direction, ordre) Qui est exactement opposé, contraire. Dans l ordre inverse. Une relation inverse. Tourner dans le sens inve … Encyclopédie Universelle
Lambda-calcul — Le lambda calcul (ou λ calcul) est un système formel inventé par Alonzo Church dans les années 1930, qui fonde les concepts de fonction et d application. Il a été le premier formalisme utilisé pour définir et caractériser les fonctions récursives … Wikipédia en Français
Lambda-Calcul — « La notion de λ définissabilité fut la première de ce qui est accepté maintenant comme l équivalent exact des descriptions mathématiques pour lesquelles des algorithmes existent. » Stephen Kleene, in Origins of Recursive Function … Wikipédia en Français
Lambda calcul — « La notion de λ définissabilité fut la première de ce qui est accepté maintenant comme l équivalent exact des descriptions mathématiques pour lesquelles des algorithmes existent. » Stephen Kleene, in Origins of Recursive Function … Wikipédia en Français
Λ-calcul — Lambda calcul « La notion de λ définissabilité fut la première de ce qui est accepté maintenant comme l équivalent exact des descriptions mathématiques pour lesquelles des algorithmes existent. » Stephen Kleene, in Origins of… … Wikipédia en Français
HILBERT (PROBLÈMES DE) — «Qui ne se réjouirait de pouvoir soulever le voile qui cache le futur, de jeter un regard sur le développement des mathématiques, ses progrès ultérieurs, les secrets des découvertes des siècles à venir?...» Prévoir le futur des mathématiques: qui … Encyclopédie Universelle
Indéterminabilité — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… … Wikipédia en Français
Theoreme d'incompletude de Godel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… … Wikipédia en Français
Théorème d'incomplétude — de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les… … Wikipédia en Français
Théorème d'incomplétude de Godel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… … Wikipédia en Français
Théorème d'incomplétude de Gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les propositions … Wikipédia en Français